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Category Description
A Very Unstable

B Moderately 
unstable

C Slightly 
unstable

D Neutral

E Slightly stable

F Moderately 
stable
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Day Night

Incoming Solar radiation Cloud Cover

Strong Moderate Slight Mostly Cloudy/ 
Thin Overcast

Partly Cloudy

< 2 A A-B B 

2-3 A-B B C E F

3-5 B B-C C D E

5-6 C C-D D D D

>6 C D D D D

Wind Speed 
(m/s)

Categories can be related to general 
weather conditions
– Used for incident modeling where limited 

data available
– Many models use this basic approach
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Continuous stability scale 
– Monin-Obukhov length 

(L)
– Ratio of mechanical and 

thermal energy fluxes 
(turbulence)

– Stable, L > 0;  Unstable, 
L < 0

Can be used to 
characterize other 
atmospheric parameters
Table:  example vs
Pasquill categories (for flat 
rural roughness)
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rural roughness)

Category 1/L (m-1)

A -0.125

B -0.062

C -0.020

D 0

E 0.022

F 0.072
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a function of stability
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Steady-state assumption
– Each hour is a ‘snapshot’ in time
– Model assumes plumes fully formed 
– Old plumes are forgotten in favor of new ones
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– Inversions are often limiting factor
– With no inversions, mixing can occur through entire 
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Plumes can be trapped by the top of the mixed 
layer
– Pollutants reflected back toward the ground
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Plumes can be isolated above the mixed layer
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– No impacts below boundary

Plumes can be split by the mixing boundary
– Mixed effects

Models can account for these effects

Plumes can be trapped by the top of the mixed 
layer
– Pollutants reflected back toward the ground
– Generally increases concentrations

Plumes can be isolated above the mixed layer
– Pollutants not transported downward
– No impacts below boundary

Plumes can be split by the mixing boundary
– Mixed effects

Models can account for these effects



Geographic SettingGeographic Setting
Geographic setting of a source influences 
dispersion through
– Land use around the facility
– Surrounding buildings
– Varying terrain elevations

Geographic setting of a source influences 
dispersion through
– Land use around the facility
– Surrounding buildings
– Varying terrain elevations



Geographic Setting – Land UseGeographic Setting – Land Use
Land use affects turbulence
– Urban/populated areas are rougher than rural 

areas, disrupting air flow more
– Results in different σ curves for rural & urban 

areas
– Newer models account for land use by compass 

sector in meteorology preprocessing
Rural & urban have specific meanings in 
regulatory modeling
– Under EPA guidance, a majority of the area 

within 3 km of a source must have densely 
populated or industrial land uses to be 
considered “urban”

– As a result, urban classification is seldom used
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flow 
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source
– Non-stack sources are not subject to 

downwash in models
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EPA has defined “Good Engineering Practice”
(GEP) stack heights to evaluate downwash 
effects
– GEP height (Hgep) is the height above which 

downwash effects are avoided
– For most cases, Hgep = Hb + 1.5 * Lb, where Hb is 

the height of the building and Lb is the lesser of 
the controlling building’s height or maximum 
profile width

– The controlling building is the building with the 
maximum Hgep for a stack.  

– A building is eligible to be the controlling building 
if any corner of the building is within 5 * Lb of the 
stack.
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above roof top) will not suffer downwash 
effects

– Stack tops shorter than 60 ft will be subject to 
downwash effects
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Regulatory models contain algorithms to account 
for downwash effects
– Downwash can increase concentrations by factors of 

2-5 times
– More sophisticated algorithms being incorporated 

into some regulatory models

Refined models handling downwash need 
detailed information
– Scaled map of building outlines, including tiers 

(corner coordinates)
– Heights of all tiers
– Coordinates of all stacks
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Receptors are placed in networks that 
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– Elevation data are obtained from USGS 

Digital Elevation data sets
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placement relative to the plume centerline
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Gaussian plume models generally limited in 
treatment of terrain effects on plumes
– Basic model treats plume as shown on previous 

slide
– Steady state plume models do not generally 

account for local air flow around terrain features

Regulatory plume models vary in treatment of 
complex terrain
– Some provide adjustments for plume impaction on 

hillsides
– Some include algorithms to decide if plume hits, 

rides over or goes around hills (critical dividing 
streamline)

– Some models are specifically designed to evaluate 
complex terrain features
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– Other models are included on the site

There are 4 models frequently encountered 
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SCREEN3  is a screening version of the 
full ISC3 model
– Screening is used to determine whether 

more refined modeling is needed
– If screening concentrations are below 

required thresholds, refined modeling may 
not be necessary 

This model contains essentially the same 
core calculations as ISC3
– Some simplifications due to the screening 

assumptions
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Synthetic meteorology matrix
– 13 wind speeds (1 – 20 m/s or  2 – 45 mph)
– 6 Pasquill stability classes
– 54 combinations

High wind speeds not associated with very stable/unstable 
categories

– Mixing heights proportional to wind speed
– All 54 combinations are evaluated
– Worst-case concentrations are output

User converts 1-hour averages to longer periods 
using predefined scaling factors
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for each building cavity zone
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wind directions 
– Single point, single level meteorological data
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– Intermediate terrain model tries both, picks maximum
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– Gas deposition (dry only) needs deposition velocity
– Particle deposition requires particle size distribution
– Wet deposition requires precipitation data
– Removal of material from plume is optional

Concentrations at 1-hour intervals
– Longer periods are block averaged
– Includes EPA procedure for handling calm hours
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CTDMPLUS & CTSCREEN are designed specifically for 
evaluating complex terrain features

– Point sources only, no downwash
– CTDMPLUS uses actual, multilevel meteorological data
– CTSCREEN uses a screening approach to choose worst-

case wind direction

Both models look at specific terrain features (hills)
– Actual hill elevation contours must be digitized as input
– Receptors may be placed on contours or elsewhere on hills

These models are only used where plume impacts on terrain 
features is of particular concern (ISC3)

CTDMPLUS & CTSCREEN are designed specifically for 
evaluating complex terrain features

– Point sources only, no downwash
– CTDMPLUS uses actual, multilevel meteorological data
– CTSCREEN uses a screening approach to choose worst-

case wind direction

Both models look at specific terrain features (hills)
– Actual hill elevation contours must be digitized as input
– Receptors may be placed on contours or elsewhere on hills

These models are only used where plume impacts on terrain 
features is of particular concern (ISC3)



Dispersion Models – CALPUFFDispersion Models – CALPUFF
CALPUFF is a Gaussian puff model
– Sources release puffs at a rate according to wind 

speed 
– Puffs disperse as they are moved by wind field
– Concentrations within puffs are Gaussian
– Puffs from previous hours persist
– Puffs are tracked over lifetime in model domain

Used for long-range transport
– Assumption of straight-line plumes not valid for long 

distances (> 10 km)
– Puffs follow curving trajectories based on wind 

direction changes
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Model features
– Point, volume, area sources
– Downwash effects
– Chemical transformations (sulfate, nitrate, 

ammonia)
– Multiple meteorological stations over large 

model domains
– Multiple vertical layers
– Gridded 3-D wind fields including terrain 

effects
– Dry and wet deposition
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Extremely sophisticated model
– Requires significant effort
– Model domains can cover 100 x 100 mile areas 

Extensive input data pre-processing requirements
– Land use / land cover data
– Terrain elevation data
– Surface meteorological data
– Upper air meteorological data
– Preprocessors can take longer to run than the model 

itself!
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Fortunately, there is a screening mode
– Model can be run with only ISC3 meteorological data 

(single-station, single-level) 
– CALPUFF uses same source inputs as ISC3

Used for Class I area evaluations
– Class I areas are natural parks, forests, and wildlife 

preserves specifically protected in the CAA
– Visibility of natural vistas is primary concern
– Sulfates, nitrates, ammonia, and fine particle 

pollution decrease ‘natural’ visibility
– CALPUFF specifically designed to model these 

effects
– Also provides acid deposition estimates for park 

ecosystems
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The ISC model has been in use for over a 
decade
– Dispersion modeling research has advanced

Quest for a successor to ISC3
Began 1991 with AMS/EPA Regulatory Model 
Improvement Committee (AERMIC)
– 1999 – AERMIC Model (AERMOD) released
– 2000 – Formally proposed as regulatory model
– 2003 – Latest round of public comment
– 2005 – Latest Beta-test release

AERMOD is generally considered on a case-by-
case basis by agencies, pending final approval
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Model features
– Same interface as ISC3
– New meteorology & terrain preprocessors
– Uses Monin-Obukhov stability
– Uses vertical profiles of wind, temperature, 

and turbulence
– All elevation ranges treated consistently
– Land use incorporated by direction sector 

in profile calculations
– Improved downwash treatment
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AERMOD relies on similarity theory
– Parameters (wind, temperature, etc.) in boundary 

layer follow similar profiles with height (z)
– Each can be expressed in terms of a scaling height 

(Monin-Obukhov Length)
– Profiles calculated based on z/L
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Profile benefits
– More realistic representation than fixed 

curves
– Allows use of multi-level meteorological 

data

AERMOD has evolved from original 
proposed version 
– Plume RIse Model Enhancements (PRIME)  

developed for ISC in 1998 are now in latest 
Beta (downwash effects)

– Dry & wet deposition processes have been 
added
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